Online Textbook Bacteriology is continuously updated and includes information on Staphylococcus, MRSA, Streptococcus, E. coli, anthrax, cholera, tuberculosis, Lyme disease and other bacterial diseases of humans.
Kenneth Todar is the author of the Online Textbook of Bacteriology and an emeritus lecturer at the University of Wisconsin-Madison.
The Online Textbook of Bacteriology is a general and medical microbiology text and includes discussion of staph, MRSA, strep, Anthrax, E. coli, cholera, tuberculosis, Lyme Disease and other bacterial pathogens.
Kenneth Todar, PhDKenneth Todar's Online Textbook of Bacteriology Home PageOnline Textbook of Bacteriology Table of ContentsInformation about materials for teaching bacteriology.Contact Kenneth Todar.





Web Review of Todar's Online Textbook of Bacteriology. "The Good, the Bad, and the Deadly"

Tag words: bacteria, anthrax, Bacillus anthracis, B. anthracis, anthrax bacillus, anthrax toxin, bioterrorism, biowarfare, endospore, spore, inhalational anthrax

Bacillus anthracis

Kingdom: Bacteria
Phylum: Firmicutes
Class: Bacilli
Order: Bacillales
Family: Bacillaceae
Genus: Bacillus
Species: anthracis









Kenneth Todar currently teaches Microbiology 100 at the University of Wisconsin-Madison.  His main teaching interest include general microbiology, bacterial diversity, microbial ecology and pathogenic bacteriology.

Bacillus cereus bacteria.Print this Page

Bacillus anthracis and Anthrax (page 5)

(This chapter has 5 pages)

© Kenneth Todar, PhD

Anthrax and Biological Warfare

The inhalation of anthrax spores can lead to infection and disease. The possibility of creating aerosols containing anthrax spores has made B. anthracis a chosen weapon of bioterrorism. Several powers may have the ability to load spores of B. anthracis into weapons. Domestic terrorists may develop means to distribute spores via mass attacks or small-scale attacks at a local level.

As an agent of biological warfare it is expected that a cloud of anthrax spores would be released at a strategic location to be inhaled by the individuals under attack. Spores of B. anthracis can be produced and stored in a dry form and remain viable for decades in storage or after release.

There is no evidence of person-to-person transmission of anthrax. Quarantine of affected individuals is not recommended. Anthrax spores may survive in the soil, water and on surfaces for many years. Spores can only be destroyed by steam sterilization or burning. Chemical disinfection of buildings is problematic. The U.S. Navy Manual on Operational Medicine and Fleet Support, entitled Biological Warfare Defense Information Sheet states "Disinfection of contaminated articles may be accomplished using a 0.05% hypochlorite solution (1 tbs. bleach per gallon of water). Spore destruction requires steam sterilization."

Anthrax spores are killed by boiling (100oC or 212oF) for 30 minutes (the actual reported time is considerably less). If boiling as a means of disinfection, the spores must be in liquid suspension to ensure killing, and in a sealed container to avoid aerosolization or vaporization of droplet nuclei containing spores.

An infection of local animal populations such as sheep and cattle could follow a biological attack with spores. Infected animals could then transmit the disease to humans through the cutaneous, intestinal or inhalation route by spores from a contaminated animal, carcass or hide.

At the time of the war with Iraq a segment of the U.S. military population was vaccinated against anthrax. An immune military population is required to resist an attack with anthrax spores.

The anthrax vaccine consists of a series of six doses with yearly boosters. The first vaccine of the series must be given at least four weeks before exposure to the disease. This vaccine protects against anthrax that is acquired through the skin and it is believed that it would also be effective against inhaled spores in a biowarfare situation. Of course, an immune military and civil population would be needed to respond to a domestic bioterrorist attack with anthrax spores. Presumably passive immunity (see the passive vaccine on the previous page) could be employed to afford immediate protection during the development of active immunity by vaccination.




END OF CHAPTER

Previous Page

Return to Page 1

© Kenneth Todar, Ph.D. All rights reserved. - www.textbookofbacteriology.net



Kenneth Todar, PhD | Home | Table of Contents | Lecture Aids | Contact | Donate

Kenneth Todar has taught microbiology to undergraduate students at The University of Texas, University of Alaska and University of Wisconsin since 1969.

© 2008-2012 Kenneth Todar, PhD - Madison, Wisconsin