Online Textbook Bacteriology is continuously updated and includes information on Staphylococcus, MRSA, Streptococcus, E. coli, anthrax, cholera, tuberculosis, Lyme disease and other bacterial diseases of humans.
Kenneth Todar is the author of the Online Textbook of Bacteriology and an emeritus lecturer at the University of Wisconsin-Madison.WearaMask.org encourages people to wear a FDA approved face mask during the Swine Flu pandemic.
The Online Textbook of Bacteriology is a general and medical microbiology text and includes discussion of staph, MRSA, strep, Anthrax, E. coli, cholera, tuberculosis, Lyme Disease and other bacterial pathogens.
Kenneth Todar, PhDKenneth Todar's Online Textbook of Bacteriology Home PageOnline Textbook of Bacteriology Table of ContentsInformation about materials for teaching bacteriology.Contact Kenneth Todar.










Web Review of Todar's Online Textbook of Bacteriology. "The Good, the Bad, and the Deadly".

Tag words: antibiotic, antimicrobial, antimicrobial agent, antibiotic resistance, penicillin, methicillin, vancomycin.











Kenneth Todar currently teaches Microbiology 100 at the University of Wisconsin-Madison.  His main teaching interest include general microbiology, bacterial diversity, microbial ecology and pathogenic bacteriology.

Bacillus cereus bacteria.Print this Page

Antimicrobial Agents in the Treatment of Infectious Disease
(page 6)


(This chapter has 6 pages)

© Kenneth Todar, PhD

Competitive Inhibitors

Many of the synthetic chemotherapeutic agents (synthetic antibiotics) are competitive inhibitors of essential metabolites or growth factors that are needed in bacterial metabolism.  Hence, these types of antimicrobial agents are sometimes referred to as anti-metabolites or growth factor analogs, since they are designed to specifically inhibit an essential metabolic pathway in the bacterial pathogen. At a chemical level, competitive inhibitors are structurally similar to a bacterial growth factor or metabolite, but they do not fulfill their metabolic function in the cell. Some are bacteriostatic and some are bactericidal. Their selective toxicity is based on the premise that the bacterial pathway does not occur in the host.

Sulfonamides were introduced as chemotherapeutic agents by Domagk in 1935, who showed that one of these compounds (prontosil) had the effect of curing mice with infections caused by beta-hemolytic streptococci. Chemical modifications of the compound sulfanilamide gave rise to compounds with even higher and broader antibacterial activity. The resulting sulfonamides have broadly similar antibacterial activity, but differ widely in their pharmacological actions. Bacteria which are almost always sensitive to the sulfonamides include Streptococcus pneumoniae, beta-hemolytic streptococci and E. coli. The sulfonamides have been extremely useful in the treatment of uncomplicated UTI caused by E. coli, and in the treatment of meningococcal meningitis (because they cross the blood-brain barrier).

The sulfonamides (e.g. Gantrisin and Trimethoprim) are inhibitors of the bacterial enzymes required for the synthesis of tetrahydofolic acid (THF), the vitamin form of folic acid essential for 1-carbon transfer reactions. Sulfonamides are structurally similar to para aminobenzoic acid (PABA), the substrate for the first enzyme in the THF pathway, and they competitively inhibit that step. Trimethoprim is structurally similar to dihydrofolate (DHF) and competitively inhibits the second step in THF synthesis mediated by the DHF reductase. Animal cells do not synthesize their own folic acid but obtain it in a preformed fashion as a vitamin. Since animals do not make folic acid, they are not affected by these drugs, which achieve their selective toxicity for bacteria on this basis.

The chemical structures of sulfanilamide and para-aminobenzoic acid (PABA). In bacteria, sulfanilamide acts as a competitive inhibitor of the enzyme dihydropteroate synthetase, DHPS, which catalyses the conversion of PABA to dihydropteroate, a key step in folate synthesis. Folate is necessary for the cell to synthesize nucleic acids (DNA and RNA), and in its absence, cells will be unable to divide. Hence, sulfanilamide and other sulfonamides exhibit a bacteriostatic rather than bactericidal effect.

Three additional synthetic chemotherapeutic agents have been used in the treatment of tuberculosis:  isoniazid (INH), para-aminosalicylic acid (PAS), and ethambutol. The usual strategy in the treatment of tuberculosis has been to administer a single antibiotic (historically streptomycin, but now, most commonly, rifampicin is given) in conjunction with INH and ethambutol. Since the tubercle bacillus rapidly develops resistance to the antibiotic, ethambutol and INH are given to prevent outgrowth of a resistant strain. It must also be pointed out that the tubercle bacillus rapidly develops resistance to ethambutol and INH if either drug is used alone. Ethambutol inhibits incorporation of mycolic acids into the mycobacterial cell wall. Isoniazid has been reported to inhibit mycolic acid synthesis in mycobacteria and since it is an analog of pyridoxine (Vitamin B6) it may inhibit pyridoxine-catalyzed reactions as well. Isoniazid is activated by a mycobacterial peroxidase enzyme and destroys several targets in the cell. PAS is an anti-folate, similar in activity to the sulfonamides. PAS was once a primary anti-tuberculosis drug, but now it is a secondary agent, having been largely replaced by ethambutol.



Isoniazid is also called isonicotinyl hydrazine or INH. Isoniazid is a first-line anti-tuberculosis medication used in the prevention and treatment of tuberculosis. Isoniazid is never used on its own to treat active tuberculosis because resistance quickly develops.




END OF CHAPTER

Previous Page

Return to Page 1

© Kenneth Todar, Ph.D. All rights reserved. - www.textbookofbacteriology.net



Kenneth Todar, PhD | Home | Table of Contents | Lecture Aids | Contact | Donate

Kenneth Todar has taught microbiology to undergraduate students at The University of Texas, University of Alaska and University of Wisconsin since 1969.

© 2008-2012 Kenneth Todar, PhD - Madison, Wisconsin