Online Textbook Bacteriology is continuously updated and includes information on Staphylococcus, MRSA, Streptococcus, E. coli, anthrax, cholera, tuberculosis, Lyme disease and other bacterial diseases of humans.
Kenneth Todar is the author of the Online Textbook of Bacteriology and an emeritus lecturer at the University of Wisconsin-Madison.Class Biologically Clean isolators, cleanrooms, containment units and decontamination chambers for animal research including germ-free and gnotobiotic.
The Online Textbook of Bacteriology is a general and medical microbiology text and includes discussion of staph, MRSA, strep, Anthrax, E. coli, cholera, tuberculosis, Lyme Disease and other bacterial pathogens.
Kenneth Todar, PhDKenneth Todar's Online Textbook of Bacteriology Home PageOnline Textbook of Bacteriology Table of ContentsInformation about materials for teaching bacteriology.Contact Kenneth Todar.



Looking for the most current news, updates, and articles relating to microbiology, go to The American Society for Microbiology educational website Microbe World.






Web Review of Todar's Online Textbook of Bacteriology. "The Good, the Bad, and the Deadly".

Tag words: Escherichia coli, E. coli, E. coli O157:H7, enteropathogenic E. coli, EPEC, enterotoxigenic E. coli, ETEC, LT toxin, ST toxin, vero toxin, shiga toxin, food poisoning, gastroenteritis, hemolytic uremic syndrome, HUS, neonatal meningitis, urinary tract infection, UTI.

Escherichia coli

Kingdom: Bacteria
Phylum: Proteobacteria
Class: Gamma Proteobacteria
Order: Enterobacteriales
Family: Enterobacteriaceae
Genus: Escherichia
Species: E. coli








Kenneth Todar currently teaches Microbiology 100 at the University of Wisconsin-Madison.  His main teaching interest include general microbiology, bacterial diversity, microbial ecology and pathogenic bacteriology.

Bacillus cereus bacteria.Print this Page

To search the entire book, enter a term or phrase in the form below

Custom Search


Pathogenic E. coli (page 1)

(This chapter has 4 pages)

© Kenneth Todar, PhD


E. coli O157:H7. Phase contrast image of cells immobilized on an agar-coated slide. William Ghiorse, Department of Microbiology, Cornell University, Ithaca, New York. Licensed for use by ASM Microbe Library http://www.microbelibrary.org

Escherichia coli

Theodor Escherich first described E. coli in 1885, as Bacterium coli commune, which he isolated from the feces of newborns. It was later renamed Escherichia coli, and for many years the bacterium was simply considered to be a commensal organism of the large intestine. It was not until 1935 that a strain of E. coli was shown to be the cause of an outbreak of diarrhea among infants.

The GI tract of most warm-blooded animals is colonized by E. coli within  hours or a few days after birth. The bacterium is ingested in foods or water or obtained directly from other individuals handling the infant. The human bowel is usually colonized within 40 hours of birth. E. coli can adhere to the mucus overlying the large intestine. Once established, an E. coli strain may persist for months or years. Resident strains shift over a long period (weeks to months), and more rapidly after enteric infection or antimicrobial chemotherapy that perturbs the normal flora. The basis for these shifts and the ecology of Escherichia coli in the intestine of humans are poorly understood despite the vast amount of information on almost every other aspect of the organism's existence. The entire DNA base sequence of the E. coli genome has been known since 1997.

E. coli is the head of the large bacterial family, Enterobacteriaceae, the enteric bacteria, which are facultatively anaerobic Gram-negative rods that live in the intestinal tracts of animals in health and disease. The Enterobacteriaceae are among the most important bacteria medically. A number of genera within the family are human intestinal pathogens (e.g. Salmonella, Shigella, Yersinia). Several others are normal colonists of the human gastrointestinal tract (e.g. Escherichia, Enterobacter, Klebsiella), but these bacteria, as well, may occasionally be associated with diseases of humans.

Physiologically, E. coli is versatile and well-adapted to its characteristic habitats. It can grow in media with glucose as the sole organic constituent. Wild-type E. coli has no growth factor requirements, and metabolically it can transform glucose into all of the macromolecular components that make up the cell. The bacterium can grow in the presence or absence of O2. Under anaerobic conditions it will grow by means of fermentation, producing characteristic "mixed acids and gas" as end products. However, it can also grow by means of anaerobic respiration, since it is able to utilize NO3, NO2 or fumarate as final electron acceptors for respiratory electron transport processes. In part, this adapts E. coli to its intestinal (anaerobic) and its extraintestinal (aerobic or anaerobic) habitats.

E. coli can respond to environmental signals such as chemicals, pH, temperature, osmolarity, etc., in a number of very remarkable ways considering it is a unicellular organism. For example, it can sense the presence or absence of chemicals and gases in its environment and swim towards or away from them. Or it can stop swimming and grow fimbriae that will specifically attach it to a cell or surface receptor. In response to change in temperature and osmolarity, it can vary the pore diameter of its outer membrane porins to accommodate larger molecules (nutrients) or to exclude inhibitory substances. With its complex mechanisms for regulation of metabolism the bacterium can survey the chemical contents in its environment in advance of synthesizing any enzymes that metabolize these compounds. It does not wastefully produce enzymes for degradation of carbon sources unless they are available, and it does not produce enzymes for synthesis of metabolites if they are available as nutrients in the environment.

E. coli is a consistent inhabitant of the human intestinal tract, and it is the predominant facultative organism in the human GI tract; however, it makes up a very small proportion of the total bacterial content. The anaerobic Bacteroides species in the bowel outnumber E. coli by at least 20:1. however, the regular presence of E. coli in the human intestine and feces has led to tracking the bacterium in nature as an indicator of fecal pollution and water contamination. As such, it is taken to mean that, wherever E. coli is found, there may be fecal contamination by intestinal parasites of humans.


Unstained cells of E. coli viewed by phase microscopy. about 1000X magnification. CDC.




chapter continued

Next Page

© Kenneth Todar, Ph.D. All rights reserved. - www.textbookofbacteriology.net



Kenneth Todar, PhD | Home | Table of Contents

Kenneth Todar has taught microbiology to undergraduate students at The University of Texas, University of Alaska and University of Wisconsin since 1969.

© 2020 Kenneth Todar, PhD - Madison, Wisconsin